常用公式助记

卷积神经网络维度变化

\[ \text{Size In Covolutional Layer: l}\\ \] \[ \begin{aligned} && Filter\ Size&: & f^{[l]} &\quad \text{Width and hight of a filter}\\ && Padding &: &p^{[l]} &\quad \text{The extra edge added around}\\ && Stride & : &s^{[l]} &\quad \text{The step for filter to move}\\ && Channel &: &n_c^{[l]}&\quad \text{Equal to the numbers of filters}\\ && Filter&: & f^{[l]} \times f^{[l]} \times n_c^{[l-1]}\\ && Input&: & n_h^{[l-1]} \times n_w^{[l-1]} \times n_c^{[l-1]} &\quad \text{e.g.An image shaped(32,32,3)}\\ && Output&: & n_h^{[l]} \times n_w^{[l]} \times n_c^{[l]}\\ && n_{n/w}^{[l]} &= & \biggl \lfloor\frac{n_{n/w}^{[l-1]} + 2p^{[l]}-f^{[l]}}{s^{[l]}}+1 \biggr \rfloor\\ && Note1 & : & \text{Deeper, } n_{h/w}^{[l]} \uparrow \text{while } n_c^{[l]} \downarrow\\ && Note2 & : &Input \rightarrow Conv \rightarrow Add\ Bias & \rightarrow ReLU \rightarrow Output \end{aligned} \]